- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Schmidt, Christiane (3)
-
Akitaya, Hugo A. (1)
-
Ballinger, Brad (1)
-
Demaine, Erik D. (1)
-
Dilman, Gleb (1)
-
Eppstein, David (1)
-
Fekete, Sándor P (1)
-
Hull, Thomas C. (1)
-
Mitchell, Joseph (1)
-
Polishchuk, Valentin (1)
-
Rieck, Christian (1)
-
Scheffer, Christian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
He, Meng (1)
-
Sheehy, Don (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fekete, Sándor P; Mitchell, Joseph; Rieck, Christian; Scheffer, Christian; Schmidt, Christiane (, Proceedings of the 36th Canadian Conference on Computational Geometry (CCCG 2024))
-
Akitaya, Hugo A.; Ballinger, Brad; Demaine, Erik D.; Hull, Thomas C.; Schmidt, Christiane (, Proceedings of the 33rd Canadian Conference on Computational Geometry (CCCG 2021))He, Meng; Sheehy, Don (Ed.)We introduce basic, but heretofore generally unexplored, problems in computational origami that are similar in style to classic problems from discrete and computational geometry. We consider the problems of folding each corner of a polygon P to a point p and folding each edge of a polygon P onto a line segment L that connects two boundary points of P and compute the number of edges of the polygon containing p or L limited by crease lines and boundary edges.more » « less
An official website of the United States government

Full Text Available